Вопрос-ответ

Нас часто спрашивают о том и сем, поэтому, мы собрали здесь самые популярные вопросы и ответы на них. Если вы не нашли ответа на свой вопрос, смело задавайте его нашим специалистам.

Виды полимерного сырья
Полимеры, или макромолекулы - это очень большие молекулы, образованные связями многих молекул малого размера, которые называются составными звеньями, или мономерами. Молекулы настолько велики, что их свойства не изменяются существенным образом при добавлении или удалении нескольких таких составных звеньев.
Термин "полимерные материалы" является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность - полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ - мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.

Пластмассы могут быть разделены на две основные группы - термопластические и термореактивные. Термопластические - это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен (члены семейства полиолефинов), полистирол, поливинилхлорид, полиэтилентерефталат, найлон(капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.

Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные присоединением к поликонденсацией. Полимеры, полученные присоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол - это полимеры присоединения.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Реакция полимеризации - это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта - полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей.

Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву п. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Полимеризация - это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Наиболее распространенными полимерами углеводородной природы являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена.

Полипропилен получают стереоспецифической полимеризацией пропилена (пропена). Стереоспецифическая полимеризация - это процесс получения полимера со строго упорядоченным пространственным строением.

К полимеризации способны многие другие соединения - производные этилена, имеющие общую формулу СН2==СН-X, где Х - различные атомы или группы атомов.
Виды полимеров:

Полиолефины - это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n ) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущим полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.

Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.

Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа.

Полиэтилен

Около 60% всех пластиков, используемых для упаковки- это полиэтилен, главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения.

Полиэтилен высокой плотности (ПЭНД - низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена.

-(CH2CH2)n-
полиэтилен высокой плотности.

Полиэтилен низкой плотности (ПЭВД - высокого давления) имеют ту же химическую формулу, но отличается тем, что его структура разветвленная.

-(CH2CHR) n-
полиэтилен низкой плотности

Где R может быть -H, -(CH2)nCH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД - полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность - довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД - полиэтилен низкого давления. Пленка из ПЭНД - жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121оС позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию - высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД - это прекрасная преграда влаге. Стойки к жирам, маслам. "Шуршащий" пакет-майка ("шуршавчик"), в который вы упаковываете покупки, изготовлен именно из ПЭНД.

Существует два основных типа ПЭНД. Более <старый> тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную встречаемость реакций по цепному механизму, которые приводят к образованию разветвления как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более <молодого> типа ПЭВД.

При комнатной температуры полиэтилен - довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100°С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки- это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В его естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность.

Один недостаток использования ПЭНД в некоторых из областей применения- его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней срды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД- это наиболее широко применяемый упаковочный полимер, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Это предпочитаемый материал для пленок и сумок, из-за его низкой стоимости. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

ПП - полипропилен. Прекрасная прозрачность (при быстром охлаждении в процессе формообразования), высокая температура плавления, химическая и водостойкость. ПП пропускает водяные пары, что делает его незаменимым для "противозапотевающей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

ПВХ - поливинилхлорид. В чистом виде применяется редко из-за хрупкости и неэлостичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора - диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Идентификация полимеров

У потребителей полимерных пленок очень часто возникает практическая задача по распознаванию природы полимерных материалов, из которых они изготовлены. Основные свойства полимерных материалов, как хорошо известно, определяются составом и структурой их макромолекулярных цепей. Отсюда ясно, что для идентификации полимерных пленок в первом приближении может быть достаточной оценка функциональных групп, входящих в состав макромолекул. Некоторые полимеры благодаря наличию гидроксильных групп (-ОН) тяготеют к молекулам воды. Это объясняет высокую гигроскопичность, например, целлюлозных пленок и заметное изменение их эксплуатационных характеристик при увлажнении. В других полимерах (полиэтилентерефталат, полиэтилены, полипропилен и т.п.) такие группы отсутствуют вообще, что объясняет их достаточно хорошую водостойкость.

Наличие тех или иных функциональных групп в полимере может быть определено на основе существующих и научно обоснованных инструментальных методов исследования. Однако, практическая реализация этих методов всегда сопряжена с относительно большими временными затратами и обусловлена наличием соответствующих видов достаточно дорогостоящей испытательной аппаратуры, требующей соответствующей квалификации для ее использования. Вместе с тем, существуют достаточно простые и "быстрые" практические способы распознавания природы полимерных пленок. Эти способы основаны на том, что полимерные пленки из различных полимерных материалов отличаются друг от друга по своим внешним признакам, физико-механическим свойствам, а также по отношению к нагреванию, характеру их горения и растворимости в органических и неорганических растворителях.

Во многих случаях природу полимерных материалов, из которых изготовлены полимерные пленки, можно установить по внешним признакам, при изучении которых особое внимание следует обратить на следующие особенности: состояние поверхности, цвет, блеск, прозрачность, жесткость и эластичность, стойкость к раздиру и др. Например, неориентированные пленки из полиэтиленов, полипропилена и поливинилхлорида легко растягиваются. Пленки из полиамида, ацетата целлюлозы, полистирола, ориентированных полиэтиленов, полипропилена, поливинилхлорида растягиваются плохо. Пленки из ацетата целлюлозы нестойки к раздиру, легко расщепляются в направлении, перпендикулярном их ориентации, а также шуршат при их сминании. Более стойкие к раздиру полиамидные и лавсановые (полиэтилентерефталатные) пленки, которые также шуршат при сминании. В то же время пленки из полиэтилена низкой плотности, пластифицированного поливинилхлорида не шуршат при сминании и обладают высокой стойкостью к раздиру. Результаты изучения внешних признаков исследуемой полимерной пленки следует сравнить с характерными признаками, приведенными в табл. 15, после чего уже можно сделать некоторые предварительные выводы.

Однако, как нетрудно уяснить из анализа данных, приведенных в табл. 16, не всегда по внешним признакам можно однозначно установит природу полимера, из которого изготовлена пленка. В этом случае, необходимо попытаться количественно оценить какие-нибудь физико-механические характеристики имеющегося образца полимерной пленки. Как видно, например, из данных, приведенных в табл. 16, плотность некоторых полимерных материалов (ПЭНП, ПЭВП, ПП) меньше единицы, а, следовательно, образцы этих пленок должны "плавать" в воде. С тем, чтобы уточнить вид полимерного материала, из которого изготовлена пленка, следует определить плотность имеющегося образца путем измерения его веса и вычисления или измерения его объема. Уточнению природы полимерных материалов способствуют и экспериментальные данные по таким их физико-механическим характеристикам как предел прочности и относительное удлинение при одноосном растяжении, а также температура плавления (табл. 16). Кроме того, как видно из анализа данных, приведенных в табл. 16, проницаемость полимерных пленок по отношению к различным средам также существенно зависит от вида материала, из которого они изготовлены.

Помимо отличительных особенностей в физико-механических характеристиках следует отметить и существующие различия в характерных признаках различных полимеров при их горении. Этот факт позволяет использовать на практике так называемый термический метод идентификации полимерных пленок. Он заключается в том, что образец пленки поджигают и выдерживают в открытом пламени в течение 5-10 секунд, фиксируя при этом следующие свойства: способность к горению и его характер, цвет и характер пламени, запах продуктов горения и др. Характерные признаки горения наиболее отчетливо наблюдаются в момент поджигания образцов. Для установления вида полимерного материала, из которого изготовлена пленка, необходимо сравнить результаты проведенного испытания с данными о характерных особенностях поведения полимеров при горении, приведенными в табл. 17.

Как видно из данных, приведенных в табл. 17 , по характеру горения и запаху продуктов горения полиолефины (полиэтилены и полипропилен) напоминают парафин. Это вполне понятно, поскольку элементарный химический состав этих веществ один и тот же. Отсюда возникает сложность в различении полиэтиленов и полипропилена. Однако при определенном навыке можно отличить полипропилен по более резким запахам продуктов горения с оттенками жженой резины или горящего сургуча.

Таким образом, результаты комплексной оценки отдельных свойств полимерных пленок в соответствии с изложенными выше методами позволяют в большинстве случаев достаточно надежно установить вид полимерного материала, из которого изготовлены исследованные образцы. При возникающих затруднениях в определении природы полимерных материалов, из которых изготовлены пленки, необходимо провести дополнительные исследования их свойств химическими методами. Для этого образцы могут быть подвергнуты термическому разложению (пиролизу), при этом в продуктах деструкции определяется наличие характерных атомов (азота, хлора, кремния и т.п.) или групп атомов (фенола, нитрогрупп и т.п.), склонных к специфическим реакциям, в результате которых обнаруживается вполне определенный индикаторный эффект.

Изложенные выше практические методы определения вида полимерных материалов, из которых изготовлены полимерные пленки, носят в известной степени субъективный характер, а, следовательно, не могут гарантировать их сто процентной идентификации. Если такая необходимость все же возникает, то следует воспользоваться услугами специальных испытательных лабораторий, компетентность которых подтверждена соответствующими аттестационными документами.

 
Вид полимера Внешние признаки
Механические Состояние поверхности на ощупь Цвет Прозрачность Блеск
ПЭВД Мягкая, эластичная, стойкая к раздиру Маслянистая, гладкая Бесцветная Прозрачная Матовая
ПЭНД Жестковатая, стойкая к раздиру Слегка маслянистая, гладкая, слабо шуршащая Бесцветная Полупрозрачная Матовая
ПП Жестковатая, слегка эластичная, стойкая к раздиру Сухая, гладкая Бесцветная Прозрачная или полупрозрачная Средний
ПВХ Жестковатая, стойкая к раздиру Сухая, гладкая Бесцветная Прозрачная Средний
ПВДХ Мягкая, стойкая к раздиру Сухая, гладкая Бесцветная Прозрачная Средний
ОПС Жесткая, стойкая к раздиру Сухая, гладкая, сильно шуршащая Бесцветная Прозрачная Высокий
ПА Жесткая, слабо стойкая к раздиру Сухая, гладкая Бесцветная или светло-желтая Полупрозрачная Слабый
ПЭТФ Жесткая, слабо стойкая к раздиру Сухая, гладкая, сильно шуршащая Бесцветная или с голубоватым оттенком Прозрачная Средний
ПК Жесткая, слабо стойкая к раздиру Сухая, гладкая, сильно шуршащая Бесцветная, с желтоватым или голубоватым оттенком Высокопрозрачная Высокий
АЦ Жесткая, не стойкая к раздиру Сухая, гладкая Бесцветная Высокопрозрачная Высокий
Целлофан Жесткая, не стойкая к раздиру Сухая, гладкая Бесцветная Высокопрозрачная Высокий


Вид полимера Физико-механические характеристики при 20°C
Плотность, кг/м3 Прочность при разрыве, МПа Относительное удлинение при разрыве,% Проницаемость по водяным парам, г/м2 за 24 часа Проницаемость по кислороду, см3/(м2хатм) за 24 часа Проницаемость по CO2, см3/(м2хатм) за 24 часа Темпе-ратура плавления, °C
ПЭВД 910-930 окт.16 150-600 15-20 6500-8500 30000-40000 102-105
ПЭНД 940-960 20-32 400-800 04.июн 1600-2000 8000-10000 125-138
ПП 900-920 30-35 200-800 окт.20 300-400 9000-11000 165-170
ПВХ 1370-1420 47-53 30-100 30-40 150-350 450-1000 150-200
ПВДХ 1800-1900 50-80 20-50 1,5-5.0 авг.25 40-60 200-210
ОПС 1050-1100 60-70 18-22 50-150 4500-6000 12000-14000 170-180
ПА 1100-1150 50-70 200-300 40-80 400-600 1600-2000 220-230
ПЭТФ 1360-1400 60-80 50-75 25-30 40-50 300-350 240-270
ПК 1200 62-74 20-80 70-100 4000-5000 25000-30000 225-245
АЦ 1320-1350 50-80 15-50 100-300 2000-3000 15000-16000  
Целлофан 1400 50-70 15-30 май.15 650-700 950-1000  



 
Вид полимера Характеристики горения Химическая стойкость
Горючесть Окраска пламени Запах продуктов горения К кислотам К щелочам
ПЭВД Горит в пламени и при удалении Внутри синеватая, без копоти Горящего парафина Отличная Хорошая
ПЭНД Горит в пламени и при удалении Внутри синеватая, без копоти Горящего парафина Отличная Хорошая
ПП Горит в пламени и при удалении Внутри синеватая, без копоти Горящего парафина Отличная Хорошая
ПВХ Трудно воспламе-няется и гаснет Зеленоватая с копотью Хлористого водорода Хорошая Хорошая
ПВДХ Трудно воспламе-няется и гаснет Зеленоватая с копотью Хлористого водорода Отличная Отличная
ОПС Загорается и горит вне пламени Желтоватая с сильной копотью Сладковатый, неприятный Отличная Хорошая
ПА Горит и самозатухает Голубая, желтоватая по краям Жженого рога или пера Плохая Хорошая
ПЭТФ Трудно воспламеняется и гаснет Светящаяся Сладковатый Отличная Отличная
ПК Трудно воспламеняется и гаснет Желтоватая с копотью Жженой бумаги Хорошая Плохая
АЦ Горит в пламени Искрящаяся Уксусной кислоты Плохая Хорошая
Целлофан Горит в пламени Белая Жженой бумаги Плохая Плохая


Показатель текучести расплава

Показатель текучести расплава полимерного материала это масса полимера в граммах, выдавливаемая через капилляр при определенной температуре и определенном перепаде давления за 10 минут. Определение величины показателя текучести расплава производят на специальных приборах, называемых капиллярными вискозиметрами. При этом размеры капилляра стандартизованы: длина 8,000+0,025 мм; диаметр 2,095+0,005 мм; внутренний диаметр цилиндра вискозиметра составляет 9,54+0,016 мм. Не целочисленные значения размеров капилляров связанны с тем, что впервые методика определения показателя текучести расплава появилась в странах с английской системой мер.

Условия, рекомендуемые для определения показателя текучести расплава, регламентируются соответствующими стандартами. ГОСТ 11645-65 рекомендует нагрузки 2,16 кг, 5 кг и 10 кг и температуры, кратные 10°C. ASTM 1238-62T (США) рекомендует температуры от 125°C до 275°C и нагрузки от 0,325 кг до 21,6 кг. Наиболее часто показатель текучести расплава определяют при температуре 190°C и нагрузке 2,16 кг.

Величина показателя текучести для различных полимерных материалов определяется при различных нагрузках и температурах. Поэтому надо иметь в виду, что абсолютные величины показателя текучести сравнимы лишь для одного и того же материала. Так, например, можно сравнивать величину показателя текучести расплава полиэтилена низкой плотности различных марок. Сравнение же величин показателей текучести полиэтилена высокой и низкой плотности не дает возможности непосредственно сопоставить текучесть обоих материалов. Поскольку первый определяется при нагрузке в 5 кг, а второй при нагрузке в 2,16 кг.

Следует отметить, что вязкость расплавов полимеров существенно зависит от приложенной нагрузки. Так как показатель текучести того или иного полимерного материала измеряют лишь при одном значении нагрузки, то этот показатель характеризует только одну точку на всей кривой течения в области относительно низких напряжений сдвига. Поэтому полимеры, несколько различающиеся по разветвленности макромолекул или по молекулярной массе, но с одинаковым показателем текучести расплава, могут вести себя по-разному в зависимости от условий переработки. Однако, несмотря на это, по показателю текучести расплава для многих полимеров устанавливают границы рекомендуемых технологических параметров процесса переработки. Значительное распространение этого метода объясняется его быстротой и доступностью.

Экструзионные процессы производства пленок требуют высоких вязкостей расплава, в связи с этим применяются марки сырья с низким показателем текучести расплава.
Технологии упаковки в термоусадочые пленки
Ламинационная пленка

Если вы не нашли ответ на интересующий вас вопрос, пожалуйста, позвоните нам.